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Executive Summary 
This best practice explains an approach to construct confidence intervals for the median and 

other percentiles by walking through an example in JMP. When the distribution of a statistic for a 

population characteristic of interest is known, we can use the properties of this distribution to construct 

confidence intervals of that population characteristic. For example, if the population has a normal 

distribution, then the sample mean has a normal distribution and we use this information to construct 

confidence intervals of the population mean. The construction of confidence intervals for the median, or 

other percentiles, however, is not as straightforward.   

Keywords: confidence interval, median, percentile, statistical inference 

Introduction 
Kensler and Cortes (2014) and Ortiz and Truett (2015) discuss the use and interpretation of 

confidence intervals (CIs) to draw conclusions about some characteristic of a population. These best 

practices provide examples of CIs for a population proportion and population mean, respectively. In this 

best practice, let us assume that our characteristic of interest is a continuous variable. If we know that 

the underlying distribution of this variable is normally distributed, we can use the techniques discussed 

by Ortiz and Truett (2015) to calculate a CI from a random sample of data from our population. 

However, what is the correct approach when the assumptions required for the CI do not apply?  

If the assumptions of CIs for the mean do not hold for your data or the distribution of your 

population is unknown, it may be advantageous to estimate the median. There may also be cases where 

a percentile (for example the 75th or 95th percentile) may be of more interest than the center of the 

data. We can easily calculate an estimate of the population percentiles from a random sample (see 

below). However, this is a point estimate: a single value that estimates the population percentile. Rather 

than provide only a single value, we would like to also determine a confidence interval on the 

population percentile. This would provide us a realistic range of values for the percentile with a given 

degree of confidence. In this best practice, we demonstrate how to determine CIs of population 

percentiles, including the median. The technique is demonstrated using JMP (V.12). The appendix 

provides the mathematical details for those interested.  

Definitions and Notation 
We first introduce some definitions and notation to explain the method of constructing CIs for 

percentiles.  

Percentile: The pth percentile (denoted 𝑥𝑝) is the value 𝑥 of a population/random variable such that 

P(𝑋 ≤ 𝑥) = 𝑝. The pth (sample) percentile (denoted 𝑥𝑝) is the value such that 100𝑝% of the sample is 

smaller than 𝑥. Equivalently, 100(1 − 𝑝)% of the data lies above 𝑥 (Kvam and Vidakovic, 2007). The 
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median, for example, is the 50th percentile. 50% of the population falls below the median and 50% lies 

above the median. The 75th percentile, 𝑥0.75, is the value such that 75% of the population falls below 

𝑥0.75 and 25% lies above 𝑥0.75.  

Order Statistic: Let 𝑋1, 𝑋2, … , 𝑋𝑛 be a random, independent sample from a population. The sample can 

be ordered in an ascending order and denoted as 𝑋(1), 𝑋(2), … , 𝑋(𝑛) such that: 

𝑋(1) < 𝑋(2) < ⋯ < 𝑋(𝑛−1) < 𝑋(𝑛) 

where 𝑋(𝑖) denotes the 𝑖th largest value in the sample. So, for example, 𝑋(1) denotes the minimum and 

𝑋(𝑛) denotes the maximum. 𝑋(𝑖) is called an order statistic. Order statistics are commonly used in 

nonparametric statistics, a field of statistics that does not rely on assumptions of the distribution of the 

population. (A side note: nonparametric statistics does not mean “assumption-free!”) We can use order 

statistics to determine a confidence interval for the median of a population (or any other percentile). 

There are many theoretical properties regarding order statistics (see Kvam and Vidakovic, 2007 or 

Casella and Berger, 2002 for details).  

Estimating Percentiles 

For large samples, there is often a rank number 𝑟 between 1 and the sample size 𝑛 such that 

𝑋(𝑟) = 𝑥𝑝. In other words, a value in the sample is the pth percentile if 𝑝(𝑛 + 1) = 𝑟 (Kvam and 

Vidakovic, 2007). For example, a random sample of 5 observations has the values 4, 2, 7, 5, 9. Arranging 

this sample in ascending order gives us 2, 4, 5, 7, 9. The 50th percentile (the median) corresponds to the 

3rd order statistic 𝑋(3) = 5 since 0.5(5 + 1) = 𝑟 = 3. However, note that if we wish to estimate the 75th 

percentile in this way, there is not an integer 𝑟 between 1 and 𝑛 such that 0.75(5 + 1) = 𝑟.  

If 𝑝(𝑛 + 1) is not an integer, we can interpolate the percentile between 𝑋(𝑟) and 𝑋(𝑟+1), often 

done with software. For example, if the sample size is even, the median can be estimated as 𝑀 =
𝑋(𝑛)+𝑋(𝑛+1)

2
. If your sample size is odd, the median can be estimated as 𝑀 = 𝑋

(
𝑛+1

2
)
, as we saw above. 

Finding the Confidence Limits Using JMP 
The previous section explained how to estimate a percentile with a single value. The goal is to 

identify values 𝑋(𝑗) and 𝑋(𝑘) in the sample such that P(𝑋(𝑗) ≤ 𝑥𝑝 ≤ 𝑋(𝑘)) = 1 − 𝛼, where 𝛼 denotes 

the probability of a type I error and 1 − 𝛼 denotes the confidence level. For example,  

P(𝑋(𝑗) ≤ 𝑥0.50 ≤ 𝑋(𝑘)) = 0.95 would provide us a 95% CI of the population median using values 

contained in the sample. Note how this approach is different compared to CIs for the mean and 

proportion discussed previously. Those approaches take on the general form of: 

𝑠 = 𝐶(𝑐𝑜𝑛𝑓 𝑙𝑒𝑣𝑒𝑙,𝑛)𝑠. 𝑒. (𝑠), 
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where 𝑠 is some statistic, 𝐶 is a critical value based on the confidence level and sample size, and 𝑠. 𝑒. (𝑠) 

is the standard error of the statistic. This is a parametric approach, meaning it uses properties of the 

distribution of the statistic to determine the lower and upper confidence bounds. CIs for percentiles 

uses a nonparametric approach, which, as mentioned previously, does not use any information about 

the distribution of the statistic. Therefore, this approach uses the data contained in the sample to 

determine lower and upper confidence bounds for the population percentile.   

Let’s consider an example. Suppose we have the following random sample of size 20 from some 

population with an unknown distribution (displayed in Table 1). For convenience, the data are listed in 

ranked (ascending) order.   

Table 1: Random Sample of Data (in Ascending Order) 

Rank 1 2 3 4 5 6 7 8 9 10 

Value 0.49 0.59 0.86 1.01 1.24 1.25 1.81 2.01 2.29 2.66 

Rank 11 12 13 14 15 16 17 18 19 20 

Value 2.82 2.85 3 3.27 4.44 5.14 5.53 5.6 6.06 6.29 

 

What is a 95% CI for the median and the 75th percentile? Using statistical software, we can 

estimate the median and 75th percentile and their respective CIs. To perform this analysis in JMP (V.12), 

with your data opened in a data table, select “Distribution” under the “Analyze” menu. Select your 

variable of interest in the “y” box, and click OK. In the results window, go to the red triangle, select 

display options, and then select custom quantiles (Figure 1). Enter in the percentiles of interest (0.50 for 

median, 0.25 for 25th percentile, 0.75 for 75th percentile, etc.) [see Figure 2]. The results are now 

displayed in the distribution results window (Figure 3). JMP displays the point estimate for the median 

as well as the lower and upper confidence limits. JMP also displays the actual confidence. As explained 

in the Appendix, the actual confidence may not be equal to the desired confidence because the 

approach uses the Binomial distribution (a discrete distribution) to determine which values in the 

sample are the lower and upper confidence limits. Particularly when the sample size is small, the CIs 

may have a much smaller level of confidence than desired.  

 As seen in Figure 3, the estimate of the median is 𝑥0.50 = 2.74. Note that this is equal to 

(𝑋(10) + 𝑋(11)) 2⁄ = (2.66 + 2.82)/2 from Table 1. The JMP results show that the 95% CI for the 

median is (1.25, 2.44) and the actual coverage is just above 95%. The estimate of the 75th percentile is 

4.965 with an approximate 95% CI of (2.85, 6.29) which correspond to 𝑋(11) and 𝑋(20). The actual 

coverage for this CI is also just above 95%.  

 Now suppose we wish to find a 95% CI for the 95th percentile of the population based on the 

sample in Table 1. Figure 4 displays the JMP results for this scenario. The 95th percentile is estimated as 

6.2785. The “95%” CI is (0.49, 6.29), which is the entire range of the sample data. Note that the actual 

coverage is just 64.15%, much lower than the desired 95% confidence. Because this dataset is so small, 
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using this approach does not yield a CI with the desired confidence level. Suppose we took a sample of 

size 100 from the same population as the previous sample. The distribution analysis results from JMP 

are shown in Figure 5. First note that this data is clearly not normally distributed. The 95% CIs for the 

median, 75th, and 95th percentiles for this larger sample are more realistic and each have actual 

confidence slightly larger than the desired confidence 95% (see Figure 5).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 1: JMP Instructions Step 1 

Figure 2: JMP Instructions Step 
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Figure 3: JMP Output 

Figure 4: JMP results for 95th percentile 

Figure 5: JMP results for sample of size n = 100 
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Alternate Approaches 
The mathematical details to determine the CIs for percentiles based on the distribution-free 

method described above is explained in the Appendix. JMP also calculates “Smoothed Empirical 

Likelihood Estimates” which is based on the work of Chen and Hall (1993). These results can be seen in 

Figure 3 and Figure 5. This is a more advanced method to calculate CIs for percentiles that uses a 

distribution constructed from the observed sample data. The method discussed previously was truly 

distribution-free and only required determining which ranked values in the sample to use as the lower 

and upper confidence bounds.  

An alternate approach to finding CIs for percentiles (and any statistic) without relying on the 

distribution of the population is to use bootstrapping. In short, bootstrapping is a resampling method to 

estimate the sampling distribution of a statistic. The sampling distribution of the sample mean can be 

approximated by the Central Limit Theorem. The sampling distributions of other statistics, however, are 

often unknown (like with the median or other percentiles). To construct CIs on a statistic, we use 

properties of the sampling distribution to determine the confidence bounds. When this distribution is 

unknown, bootstrapping can estimate this sampling distribution which we can then use to construct the 

CIs. Bootstrapping will be discussed in a separate Best Practice. See Givens and Hoeting (2013) for 

details on bootstrapping. 

Conclusion 
It is possible to calculate CIs for the median and other percentiles. A word of caution worth 

reiterating: for small sample sizes, the method described here is not an ideal approach because of its 

limitations. With small sample sizes, we are not guaranteed to get a CI with the desired confidence level, 

particularly with the extreme percentiles (for example, 5% or 95% percentiles). It should also be noted 

that if the assumptions for a CI for the mean are valid for your sample, the CI for the mean will be more 

powerful than the method described here. When the assumptions are not valid however, or a percentile 

is the population characteristic of interest, we can accompany the point estimate with a CI. This will give 

us a realistic range of values for the population percentile of interest.  
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Appendix 
Here we explain the derivation of the confidence limits for percentiles. Note that there are two 

possible outcomes for each sample value 𝑋𝑖: it is either below the 100pth percentile or it’s not (a binary 

outcome). The probability that a value falls below the 100pth percentile is p. Our sample size is fixed at n. 

These conditions (along with our random sample assumption) gives us the conditions to apply the 

Binomial distribution to determine the lower and upper confidence limits. The binomial distribution is a 

common distribution for a discrete random variable and, for example, can be used to estimate the 

number of successes (or failures) in 𝑛 trials. Therefore, a 100(1-𝛼)% CI that the 100pth percentile will fall 

between the jth and kth order statistic 𝑋(𝑗) and 𝑋(𝑘) is (http://www.milefoot.com/math/stat/ci-

medians.htm): 

P(𝑋(𝑗) ≤ 𝑥𝑝 ≤ 𝑋(𝑘−1)) = ∑
𝑛!

(𝑛 − 𝑖)! 𝑖!
𝑝𝑖(1 − 𝑝)𝑛−𝑖

𝑘−1

𝑖=𝑗

≈ 1 − 𝛼 

Consider the sample data in Table 1 where we wanted to determine a 95% CI of the median. 

Table 2 shows the probabilities for the binomial distribution for the median and the given sample size (n 

= 20, p = 0.50). This table supplies the probabilities that the percentile falls in the 𝑖th subinterval of the 

ranked data. For example, 𝑖 = 0 corresponds to the case where the pth population percentile falls below 

the minimum in the sample, 𝑖 = 1 corresponds to the case where the percentile falls between the first 

and second order statistics, and 𝑖 = 𝑛 corresponds to the case where the percentile is greater than the 

maximum (see Figure 6 for a graphical representation of this up to 𝑖 = 5).  

 

Order statistic:   𝑋(1)  𝑋(2)  𝑋(3)  𝑋(4)  𝑋(5)   

𝑖th subinterval:   0  1  2  3  4  5  

http://www.milefoot.com/math/stat/ci-medians.htm
http://www.milefoot.com/math/stat/ci-medians.htm
http://www.milefoot.com/math/stat/ci-medians.htm
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Figure 1. Graphical Representation of Table 2 

We want to find values 𝑋(𝑗) and 𝑋(𝑘−1) such that P(𝑋(𝑗) ≤ 𝑥0.50 ≤ 𝑋(𝑘−1)) ≈ 1 − 𝛼. The probabilities in 

Table 2 are calculated from the binomial distribution such that: 

𝑃(𝑋 = 𝑖) =
𝑛!

(𝑛 − 𝑖)! 𝑖!
𝑝𝑖(1 − 𝑝)𝑛−𝑖  

Table 2. Binomial Probabilities for Median n = 20, p = 0.50 

𝑋 = 𝑖 𝑃(𝑋 = 𝑖) 𝑋 = 𝑖 𝑃(𝑋 = 𝑖) 
0 0 11 0.16018 

1 0.00002 12 0.12013 

2 0.00018 13 0.07393 

3 0.00109 14 0.03696 

4 0.00462 15 0.01479 

5 0.01479 16 0.00462 

6 0.03696 17 0.00109 

7 0.07393 18 0.00018 

8 0.12013 19 0.00002 

9 0.16018 20 0.00000 

10 0.1762   

 

Table 3 sorts these probabilities from largest to smallest to identify the set of subintervals with the 

desired confidence.  

Table 3. Binomial Probabilities for Median n = 20, p= 0.50 (Sorted Descending) 

𝑋 = 𝑖 𝑃(𝑋 = 𝑖) 𝑋 = 𝑖 𝑃(𝑋 = 𝑖) 
10 0.1762 16 0.00462 

11 0.16018 4 0.00462 

9 0.16018 17 0.00109 

12 0.12013 3 0.00109 

8 0.12013 18 0.00018 

13 0.07393 2 0.00018 

7 0.07393 19 0.00002 

14 0.03696 1 0.00002 

6 0.03696 20 0.00000 

15 0.01479   

 

 

Using Table 3, therefore, we can say: 
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P(𝑋(6) ≤ 𝑥𝑝 ≤ 𝑋(14)) = ∑
𝑛!

(𝑛 − 𝑖)! 𝑖!
𝑝𝑖(1 − 𝑝)𝑛−𝑖

14

𝑖=6

 

= 0.03696 + 0.07393 + 0.12013 + 0.16018 + 0.1762 + 0.16018 + 0.12013 + 0.07393 + 0.03696 

= 0.9586 

The confidence bounds for the 95% CI begin at the 6th subinterval (𝑋(6)) and end at the end of the 14th 

subinterval (𝑋(15)). This yields a 95% (actually 95.86%) CI for the median of (𝑋(6), 𝑋(15)) = (1.25,4.44)  

by referring to the ranked values in Table 1. Note that this matches the output from JMP in Figure 3. 

Note also that because of the discrete nature of the binomial distribution, we may not be able to get a CI 

with confidence exactly equal to 1 − 𝛼. And as discussed in the main text, for small sample sizes, the 

actual confidence can be much lower than the desired confidence. 

 

 


